Abstract:
The paper considers an approach for solving the joint optimization problem of design solutions and modes of inductor functioning in the process of heating steel parts of L-shaped form for surface hardening. The first stage solves the problem of optimizing the design of the coils of the inductor and the parameters of the power supply control algorithm, ensuring the maximum uniform heating of the quenched layer to a given temperature above the Curie point in a fixed time. In the second step, a phase limitation is considered, which is a technological requirement to ensure, throughout the heating stage, a temperature not exceeding the limit value. In case of violation of the specified limit, the problem of finding the control algorithm on a special interval within which the maximum temperature in the hardened layer exceeded the maximum permissible value is solved. In the third step, the problem of joint optimization is solved with the found control algorithm at a specific interval of motion on the phase restriction. The described steps can be repeated if necessary. There is presented a test example of the application of the developed strategy for the considered class of technology induction heating for the surface hardening of metal blanks with an angle zone. For the numerical solution in the MATLAB application package developed a software complex, in which integrated two-dimensional nonlinear problem-oriented model of the induction heating process, developed in ANSYS Mechanical APDL. The algorithm for solving the joint optimization problem is based on an alternate method of parametric optimization of systems with distributed parameters. Developed strategy tested on a verified model of interconnected electromagnetic and temperature fields, it is possible to obtain a uniform temperature distribution along the boundary of the hardened layer of steel semi-finished products of complex geometric shape without local overheating throughout the heating stage.