RUS  ENG
Full version
JOURNALS // Vestnik KRAUNC. Fiziko-Matematicheskie Nauki // Archive

Vestnik KRAUNC. Fiz.-Mat. Nauki, 2020 Volume 33, Number 4, Pages 188–198 (Mi vkam446)

This article is cited in 3 papers

PHYSICS

Non-commutative phase space landau problem in the presence of a minimal length

F. A. Dossaa, J. T. Koumagnonb, J. V. Hounguevoub, G. Y.  H. Avossevoub

a Facult´e des Sciences et Techniques (FAST) Universit´e Nationale des Sciences, Technologies, Ing´enierie et Math´ematiques (UNSTIM)
b Unit´e de Recherche en Physique Th´eorique (URPT), Institut de Math´ematiques et de Sciences Physiques (IMSP)

Abstract: The deformed Landau problem under a electromagnetic field is studied, where the Heisenberg algebra is constructed in detail in non-commutative phase space in the presence of a minimal length. We show that, in the presence of a minimal length, the momentum space is more practical to solve any problem of eigenvalues. From the Nikiforov-Uvarov method, the energy eigenvalues are obtained and the corresponding wave functions are expressed in terms of hypergeometric functions. The fortuitous degeneration observed in the spectrum shows that the formulation of the minimal length complements that of the non-commutative phase space.

Keywords: Landau problem, non-commutative phase space, minimal length, Nikiforov-Uvarov method, hypergeometric functions.

UDC: 537.8

MSC: Primary 76W05; Secondary 86A25

DOI: 10.26117/2079-6641-2020-33-4-188-198



© Steklov Math. Inst. of RAS, 2024