Abstract:
In this paper, we consider a non-local problem with the integral condition for the loaded heat equation, where the loaded term is a derivative of the second order from an unknown function at the origin. The existence and uniqueness of a regular solution is proven. Using the Green's functions and thermal potentials, the existence of a regular solution to this problem is proved. The proof is based on the reduction of the formulated problem to the second kind Volterra integral equation with a weak singularity. The solvability of the obtained Volterra integral equations implies the existence of a unique solution to the problem.
Keywords:non-local problem, integral condition, loaded equation, thermal conductivity, Green's function.