RUS  ENG
Full version
JOURNALS // Vestnik KRAUNC. Fiziko-Matematicheskie Nauki // Archive

Vestnik KRAUNC. Fiz.-Mat. Nauki, 2021 Volume 36, Number 3, Pages 123–132 (Mi vkam495)

This article is cited in 2 papers

INFORMATION AND COMPUTATION TECHNOLOGIES

The extremal function of interpolation formulas in $W_2^{(2,0)}$ space

A. K. Boltaeva, Kh. M. Shadimetovb, F. A. Nuralievb

a V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences
b Tashkent State Transport University

Abstract: One of the main problems of computational mathematics is the optimization of computational methods in functional spaces. Optimization of computational methods are well demonstrated in the problems of the theory of interpolation formulas. In this paper, we study the problem of constructing an optimal interpolation formula in a Hilbert space. Here, using the Sobolev method, the first part of the problem is solved, i.e., an explicit expression of the square of the norm of the error functional of the optimal interpolation formulas in the Hilbert space $W_2^{(2,0)}$ is found.

Keywords: optimal interpolation formulas, the error functional, the extremal function, Hilbert space.

UDC: 519.64

MSC: Primary 65D30; Secondary 65D32

Language: English

DOI: 10.26117/2079-6641-2021-36-3-123-132



© Steklov Math. Inst. of RAS, 2024