RUS  ENG
Full version
JOURNALS // Vestnik KRAUNC. Fiziko-Matematicheskie Nauki // Archive

Vestnik KRAUNC. Fiz.-Mat. Nauki, 2015 Number 2(11), Pages 39–44 (Mi vkam6)

This article is cited in 6 papers

MATHEMATICS

Boundary value problem for differential equation with fractional order derivatives with different origins

L. M. Eneeva

Institute of Applied Mathematics and Automation, 360000, Republic of Kabardino-Balkariya, Nalchik, st. Shortanova, 89a

Abstract: We study a spectral problem for an ordinary differential equation with composition of fractional order differentiation operators in Riemann-Liouville and Caputo senses with different origins. We prove that for the problem under study there exist infinite sequences of eigenvalues and eigenfunctions. All of the eigenvalues are real and positive, and the eigenfunctions form an orthogonal basis in $L_{2}\left(0,1\right)$.

Keywords: fractional derivative, boundary value problem, eigenvalue, eigenfunction.

UDC: УДК 517.927

MSC: 34L05

Received: 16.09.2015

DOI: 10.18454/2079-6641-2015-11-2-39-44


 English version:
Bulletin KRASEC. Physical and Mathematical Sciences, 2015, 11:2, 36–40

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025