RUS  ENG
Full version
JOURNALS // Vladikavkazskii Matematicheskii Zhurnal // Archive

Vladikavkaz. Mat. Zh., 2009 Volume 11, Number 2, Pages 46–49 (Mi vmj30)

The order continuous dual of the regular integral operators on $L^p$

Anton R. Schep

Department of Mathematics University of South Carolina, Columbia, SC, USA

Abstract: In this paper we give two descriptions of the order continuous dual of the Banach lattics of regular integral operators on $L^p$. The first description is in terms of a Calderon space, while the second one in terms of the ideal generated by the finite rank operators.

Key words: Integral operators, order dual, $L^p$-spaces.

UDC: 517.98

MSC: 47B65, 47B34

Received: 11.11.2008

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024