RUS  ENG
Full version
JOURNALS // Vladikavkazskii Matematicheskii Zhurnal // Archive

Vladikavkaz. Mat. Zh., 2012 Volume 14, Number 1, Pages 37–46 (Mi vmj408)

On ergodic properties of homogeneous Markov chains

E. V. Golovneva

I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia

Abstract: In this paper we continue our investigations initiated in [1]. Namely, we study the spectrum of Kolmogorov matrices with at least one column separated from zero. It is shown that $\lambda=0$ is an eigenvalue with multiplicity 1, while the rest of the spectrum is separated from zero. Therefore, a Markov process generated by such a matrix converges to its uniquely defined final distribution exponentially fast. We give an explicit estimate for the rate of this convergence.

Key words: Markov processes, generator, spectrum of a matrix, final projector.

UDC: 512.643.5+519.217

Received: 03.02.2011



© Steklov Math. Inst. of RAS, 2024