RUS  ENG
Full version
JOURNALS // Vladikavkazskii Matematicheskii Zhurnal // Archive

Vladikavkaz. Mat. Zh., 2014 Volume 16, Number 2, Pages 69–78 (Mi vmj506)

This article is cited in 3 papers

Laterally complete $C_\infty(Q)$-modules

V. I. Chilina, J. A. Karimovb

a National University of Uzbekistan named after M. Ulugbek, Tashkent, Uzbekistan
b National University of Uzbekistan named after M. Ulugbek, Tashkent, Uzbekistan

Abstract: Let $X$ be a regular laterally complete $C_\infty(Q)$-module and $\mathscr B$ be a Boolean algebra whose Stone space is $Q$. We introduce the passport $\Gamma(X)$ for $X$ consisting of uniquely defined partition of unity in $\mathscr B$ and set of pairwise different cardinal numbers. It is proved that $C_\infty(Q)$-modules $X$ and $Y$ are isomorphic if and only if $\Gamma(X)=\Gamma(Y)$.

Key words: Hamel $C_\infty(Q)$-basis, homogeneous module, $\sigma$-finite dimensional module.

UDC: 512.55

Received: 27.11.2012



© Steklov Math. Inst. of RAS, 2024