RUS  ENG
Full version
JOURNALS // Vladikavkazskii Matematicheskii Zhurnal // Archive

Vladikavkaz. Mat. Zh., 2014 Volume 16, Number 4, Pages 49–53 (Mi vmj521)

This article is cited in 3 papers

Homogeneous polynomials, root mean power, and geometric means in vector lattices

Z. A. Kusraeva

South Mathematical Institute of VSC RAS, Vladikavkaz, Russia

Abstract: It is proved that for a homogeneous orthogonally additive polynomial $P$ of degree $s\in\mathbb N$ from a uniformly complete vector lattice $E$ to some convex bornological space the equations $P(\mathfrak S_s(x_1,\ldots,x_N))= P(x_1)+\ldots+P(x_N)$ and $P(\mathfrak G(x_1,\ldots,x_s))=\check P(x_1,\ldots,x_s)$ hold for all positive $x_1,\ldots,x_s\in E$, where $\check P$ is an $s$-linear operator generating $P$, while $\mathfrak S_s(x_1,\ldots,x_N)$ and $\mathfrak G(x_1,\ldots,x_s)$ stand respectively for root mean power and geometric mean in the sense of homogeneous functional calculus.

Key words: vector lattice, homogeneous polynomial, linearization of a polynomial, root mean power, geometric mean.

UDC: 517.98

Received: 06.03.2014



© Steklov Math. Inst. of RAS, 2025