RUS  ENG
Full version
JOURNALS // Vladikavkazskii Matematicheskii Zhurnal // Archive

Vladikavkaz. Mat. Zh., 2015 Volume 17, Number 2, Pages 5–11 (Mi vmj537)

This article is cited in 2 papers

Automorphisms of a strongly regular graph with parameters $(1197,156,15,21)$

V. V. Bitkinaa, A. K. Gutnovab, A. A. Makhnevc

a North-Ossetia State University, Vladikavkaz, Russia
b North-Ossetia State University, Vladikavkaz, Russia
c Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia

Abstract: Let a $3$-$(V,K,\Lambda)$ scheme $\mathscr E=(X,\mathscr B)$ is an extension of a symmetric $2$-scheme. Then either $\mathscr E$ is Hadamard $3$-$(4\Lambda+4,2\Lambda+2,\Lambda)$ scheme, or $V=(\Lambda+1)(\Lambda^2+5\Lambda+5)$ and $K=(\Lambda+1)(\Lambda+2)$, or $V=496$, $K=40$ and $\Lambda=3$. The complementary graph of a block graph of $3$-$(496,40,3)$ scheme is strongly regular with parameters $(6138,1197,156,252)$ and the neighborhoods of its vertices are strongly regular with parameters $(1197,156,15,21)$. In this paper automorphisms of strongly regular graph with parameters $(1197,156,15,21)$ are studied. We yet introduce the structure of automorphism groups of abovementioned graph in vetrex symmetric case.

Key words: strongly regular graph, vertex symmetric graph, automorphism groups of graph.

UDC: 519.17+514.52

Received: 23.04.2015



© Steklov Math. Inst. of RAS, 2025