RUS  ENG
Full version
JOURNALS // Vladikavkazskii Matematicheskii Zhurnal // Archive

Vladikavkaz. Mat. Zh., 2017 Volume 19, Number 1, Pages 11–17 (Mi vmj602)

Automorphisms of the Cameron's monster with parameters $(6138, 1197, 156, 252)$

V. V. Bitkina

North Ossetian State University after Kosta Levanovich Khetagurov, Vladikavkaz

Abstract: Let the $3$-$(V, K, \Lambda)$ scheme $E=(X,B)$ be an extension of the symmetric 2-scheme. Then either $E$ is Hadamard $3$-$(4\Lambda + 4, 2\Lambda + 2,\Lambda)$ scheme, or $V = (\Lambda + 1)(\Lambda^2 + 5\Lambda + 5)$ and $K = (\Lambda + 1)(\Lambda + 2)$, or $V = 496$, $K = 40$ and $\Lambda = 3$. The complementary graph of a block graph of $3$-$(496,40,3)$ scheme is strongly regular with parameters $(6138,1197,156,252).$ Let's call this complementary graph Cameron's monster. In this paper automorphisms of monster are studied.

Key words: strongly regular graph, vertex symmetric graph, automorphism group of a graph.

UDC: 519.17

Received: 15.08.2016



© Steklov Math. Inst. of RAS, 2025