$2$-Local isometries of non-commutative Lorentz spaces
		
			A. A. Alimova, 	
V. I. Chilinb		a Tashkent Institute of Design, Construction
and Maintenance of Automobile Roads,
20 Amir Temur Av., Tashkent 100060, Uzbekistan
					b National University of Uzbekistan,
Vuzgorodok, Tashkent 100174, Uzbekistan
					
			Abstract:
			Let 
$\mathcal M $ be a  von Neumann algebra   equipped with a faithful normal finite trace 
$\tau$, and let  
$S\left( \mathcal{M}, \tau\right)$ be an 
$\ast $-algebra of all 
$\tau $-measurable operators affiliated with 
$\mathcal M $. For 
$x \in S\left( \mathcal{M}, \tau\right)$ the generalized singular value function 
$\mu(x):t\rightarrow \mu(t;x)$, 
$t>0$,  is defined by the equality  $\mu(t;x)=\inf\{\|xp\|_{\mathcal{M}}:\, p^2=p^*=p \in \mathcal{M}, \, \tau(\mathbf{1}-p)\leq t\}.$ Let 
$\psi$ be an increasing  concave continuous function on 
$[0, \infty)$ with 
$\psi(0) = 0$,  
$\psi(\infty)=\infty$, and let $\Lambda_\psi(\mathcal M,\tau) = \left \{x \in S\left( \mathcal{M}, \tau\right): \ \| x \|_{\psi} =\int_0^{\infty}\mu(t;x)d\psi(t) < \infty \right \}$ be the  non-commutative Lorentz space. A surjective (not necessarily linear) mapping   $V:\, \Lambda_\psi(\mathcal M,\tau) \to \Lambda_\psi(\mathcal M,\tau)$ is called a surjective 
$2$-local isometry, if for any 
$x, y \in \Lambda_\psi(\mathcal M,\tau) $ there exists a surjective linear isometry  $V_{x, y}:\, \Lambda_\psi(\mathcal M,\tau) \to \Lambda_\psi(\mathcal M,\tau)$  such that 
$V(x) = V_{x, y}(x)$  and  
$V(y) = V_{x, y}(y)$. It is proved that in the case when 
$\mathcal{M}$ is a  factor, every surjective  
$2$-local isometry $V:\Lambda_\psi(\mathcal M,\tau) \to  \Lambda_\psi(\mathcal M,\tau)$ is a linear isometry.	
			
Key words:
			measurable operator, Lorentz space,  isometry.	
			UDC:
			517.98	
			MSC: 46L52, 
46B04	Received: 20.06.2019	
			
Language: English	
			
DOI:
			10.23671/VNC.2019.21.44595