$2$-Local isometries of non-commutative Lorentz spaces
A. A. Alimova,
V. I. Chilinb a Tashkent Institute of Design, Construction
and Maintenance of Automobile Roads,
20 Amir Temur Av., Tashkent 100060, Uzbekistan
b National University of Uzbekistan,
Vuzgorodok, Tashkent 100174, Uzbekistan
Abstract:
Let
$\mathcal M $ be a von Neumann algebra equipped with a faithful normal finite trace
$\tau$, and let
$S\left( \mathcal{M}, \tau\right)$ be an
$\ast $-algebra of all
$\tau $-measurable operators affiliated with
$\mathcal M $. For
$x \in S\left( \mathcal{M}, \tau\right)$ the generalized singular value function
$\mu(x):t\rightarrow \mu(t;x)$,
$t>0$, is defined by the equality $\mu(t;x)=\inf\{\|xp\|_{\mathcal{M}}:\, p^2=p^*=p \in \mathcal{M}, \, \tau(\mathbf{1}-p)\leq t\}.$ Let
$\psi$ be an increasing concave continuous function on
$[0, \infty)$ with
$\psi(0) = 0$,
$\psi(\infty)=\infty$, and let $\Lambda_\psi(\mathcal M,\tau) = \left \{x \in S\left( \mathcal{M}, \tau\right): \ \| x \|_{\psi} =\int_0^{\infty}\mu(t;x)d\psi(t) < \infty \right \}$ be the non-commutative Lorentz space. A surjective (not necessarily linear) mapping $V:\, \Lambda_\psi(\mathcal M,\tau) \to \Lambda_\psi(\mathcal M,\tau)$ is called a surjective
$2$-local isometry, if for any
$x, y \in \Lambda_\psi(\mathcal M,\tau) $ there exists a surjective linear isometry $V_{x, y}:\, \Lambda_\psi(\mathcal M,\tau) \to \Lambda_\psi(\mathcal M,\tau)$ such that
$V(x) = V_{x, y}(x)$ and
$V(y) = V_{x, y}(y)$. It is proved that in the case when
$\mathcal{M}$ is a factor, every surjective
$2$-local isometry $V:\Lambda_\psi(\mathcal M,\tau) \to \Lambda_\psi(\mathcal M,\tau)$ is a linear isometry.
Key words:
measurable operator, Lorentz space, isometry.
UDC:
517.98
MSC: 46L52,
46B04 Received: 20.06.2019
Language: English
DOI:
10.23671/VNC.2019.21.44595