This article is cited in
1 paper
Some properties of orthogonally additive homogeneous polynomials on Banach lattices
Z. A. Kusraevaab,
S. N. Siukaevc a Regional Mathematical Center of Southern Federal University, 105/42 Bolshaya Sadovaya St., Rostov-on-Don 344006, Russia
b Southern Mathematical Institute VSC RAS, 22 Markus St., Vladikavkaz 362027, Russia
c North-Ossetian State University after K. L. Khetagurov,
44 Vatutina St., Vladikavkaz 362025, Russia
Abstract:
Let
$E$ and
$F$ be Banach lattices and let
$\mathcal{P}_o({}^s E,F)$ stand for the space of all norm bounded orthogonally additive
$s$-homogeneous polynomial from
$E$ to
$F$. Denote by
$\mathcal{P}_o^r({}^s E,F)$ the part of
$\mathcal{P}_o({}^s E,F)$ consisting of the differences of positive polynomials. The main results of the paper read as follows.
Theorem 3.4. Let
$s\in\mathbb{N}$ and
$(E,\|\cdot\|)$ is a
$\sigma$-Dedekind complete
$s$-convex Banach lattice. The following are equivalent:
$(1)$ $\mathcal{P}_o({}^s E,F)\equiv\mathcal{P}_o^r({}^s E,F)$ for every
$AM$-space
$F$.
$(2)$ $\mathcal{P}_o({}^s E,c_0)=\mathcal{P}^r_o({}^s E,F)$ for every
$AM$-space
$F$.
$(3)$ $\mathcal{P}_o({}^s E,c_0)=\mathcal{P}^r_o({}^s E,c_0)$.
$(4)$ $\mathcal{P}_o({}^s E,c_0)\equiv\mathcal{P}_o^r({}^s E,c_0)$.
$(5)$ $E$ is atomic and order continuous.
Theorem 4.3. For a pair of Banach lattices
$E$ and
$F$ the following are equivalent:
$(1)$ $\mathcal{P}_o^r({}^s E,F)$ is a vector lattice and the regular norm
$\|\cdot\|_r$ on
$\mathcal{P}_o^r({}^s E,F)$ is order continuous.
$(2)$ Each positive orthogonally additive
$s$-homogeneous polynomial from
$E$ to
$F$ is
$L$- and
$M$-weakly compact.
Theorem 4.6. Let
$E$ and
$F$ be Banach lattices. Assume that
$F$ has the positive Schur property and
$E$ is
$s$-convex for some
$s\in\mathbb{N}$. Then the following are equivalent:
$(1)$ $(\mathcal{P}_o^r({}^s E,F),\|\cdot\|_r)$ is a
$K B$-space.
$(2)$ The regular norm
$\|\cdot\|_r$ on
$\mathcal{P}_o^r({}^s E,F)$ is order continuous.
$(3)$ $E$ does not contain any sulattice lattice isomorphc to
$l^s$.
Key words:
Banach lattice, $AM$-space, $KB$-space, homogeneous polynomial, orthogonal additivity, regular norm, order continuity.
UDC:
517.98
MSC: 46A16,
46B42,
46G25,
47H60,
47L22 Received: 13.05.2020
DOI:
10.46698/d4799-1202-6732-b