RUS  ENG
Full version
JOURNALS // Vladikavkazskii Matematicheskii Zhurnal // Archive

Vladikavkaz. Mat. Zh., 2021 Volume 23, Number 3, Pages 16–26 (Mi vmj770)

Titchmarsh–Weyl theory of the singular Hahn–Sturm–Liouville equation

B. P. Allahverdieva, H. Tunab

a Department of Mathematics, Süleyman Demirel University, 32260 Isparta, Turkey
b Department of Mathematics, Mehmet Akif Ersoy University, 15030 Burdur, Turkey

Abstract: In this work, we will consider the singular Hahn–Sturm–Liouville difference equation defined by $-q^{-1}D_{-\omega q^{-1},q^{-1}}D_{\omega ,q}y( x) +v(x) y( x) =\lambda y(x)$, $x\in (\omega _{0},\infty),$ where $\lambda$ is a complex parameter, $v$ is a real-valued continuous function at $\omega _{0}$ defined on $[\omega _{0},\infty)$. These type equations are obtained when the ordinary derivative in the classical Sturm–Liouville problem is replaced by the $\omega,q$-Hahn difference operator $D_{\omega,q}$. We develop the $\omega,q$-analogue of the classical Titchmarsh–Weyl theory for such equations. In other words, we study the existence of square-integrable solutions of the singular Hahn–Sturm–Liouville equation. Accordingly, first we define an appropriate Hilbert space in terms of Jackson–Nörlund integral and then we study families of regular Hahn–Sturm–Liouville problems on $[\omega_{0},q^{-n}]$, $n\in \mathbb{N}$. Then we define a family of circles that converge either to a point or a circle. Thus, we will define the limit-point, limit-circle cases in the Hahn calculus setting by using Titchmarsh's technique.

Key words: Hahn's Sturm–Liouville equation, limit-circle and limit-point cases, Titchmarsh–Weyl theory.

UDC: 517.927.4

MSC: 39A13, 39A70, 34B20, 39A12

Language: English

DOI: 10.46698/y9113-7002-9720-u



© Steklov Math. Inst. of RAS, 2024