RUS  ENG
Full version
JOURNALS // Vladikavkazskii Matematicheskii Zhurnal // Archive

Vladikavkaz. Mat. Zh., 2021 Volume 23, Number 4, Pages 96–108 (Mi vmj789)

This article is cited in 3 papers

Local grand Lebesgue spaces

S. G. Samkoab, S. M. Umarkhadzhievbc

a University of Algarve, Faro 8005-139, Portugal
b Kh. Ibragimov Complex Institute of Russian Academy of Sciences, 21 а Staropromyslovskoe Hwy, Grozny 364051, Russia
c Academy of Sciences of Chechen Republic, 13 Esambaev Av., Grozny 364024, Russia

Abstract: We introduce “local grand” Lebesgue spaces $L^{p),\theta}_{x_0,a}(\Omega)$, $0<p<\infty,$ $\Omega \subseteq \mathbb{R}^n$, where the process of “grandization” relates to a single point $x_0\in \Omega$, contrast to the case of usual known grand spaces $L^{p),\theta}(\Omega)$, where “grandization” relates to all the points of $\Omega$. We define the space $L^{p),\theta}_{x_0,a}(\Omega)$ by means of the weight $a(|x-x_0|)^{\varepsilon p}$ with small exponent, $a(0)=0$. Under some rather wide assumptions on the choice of the local “grandizer” $a(t)$, we prove some properties of these spaces including their equivalence under different choices of the grandizers $a(t)$ and show that the maximal, singular and Hardy operators preserve such a “single-point grandization” of Lebesgue spaces $L^p(\Omega)$, $1<p<\infty$, provided that the lower Matuszewska–Orlicz index of the function $a$ is positive. A Sobolev-type theorem is also proved in local grand spaces under the same condition on the grandizer.

Key words: grand space, Lebesgue space, Muckenhoupt weight, maximal operator, singular operator, Hardy operator, Stein–Weiss interpolation theorem, Matuszewska–Orlicz indices.

UDC: 517.928+517.968

MSC: 46E30, 42B35

Received: 17.05.2021

Language: English

DOI: 10.46698/e4624-8934-5248-n



© Steklov Math. Inst. of RAS, 2025