RUS  ENG
Full version
JOURNALS // Vladikavkazskii Matematicheskii Zhurnal // Archive

Vladikavkaz. Mat. Zh., 2025 Volume 27, Number 2, Pages 93–111 (Mi vmj958)

Approximation properties of Valle-Poussin averages for discrete Fourier sums bypolynomials orthogonal on arbitrary nets

A. A. Nurmagomedova, M. M. Shikhshinatovab

a Dagestan State Agrarian University, 180 M. Gadzhiev St., Makhachkala 367032, Russia
b Moscow State University of Civil Engineering, 26 Yaroslavskoye shosse, Moscow 129337, Russia

Abstract: Let $T=\{t_0, t_1, \ldots, t_N\}$ and $T_N=\{x_0, x_1, \ldots, x_{N-1}\},$ where $x_j=(t_j+t_{j+1})/2$, $j=0, 1, \ldots, N-1,$ are any system of different points from $[-1, 1].$ For arbitrary continuous function $f(x)$ on the segment $[-1, 1]$ we construct Valle-Poussin type averages $V_{n,m,N}(f,x)$ for discrete Fourier sums $S_{n,N}(f,x)$ on system of polynomials $\{\hat{p}_{k,N}(x)\}_{k=0}^{N-1}$ forming an orthonormals system on any finite non-uniform grids $T_N=\{x_j\}_{j=0}^{N-1}$ with weight $\Delta{t_j}=t_{j+1}-t_j.$ Approximation properties of the constructed averages $V_{n,m,N}(f,x)$ of order $n+m\leq{N-1}$ in the space of continuous functions $C[-1, 1]$ are investigated. Namely, it is proved that the Vallee-Poussin averages $V_{m,n,N}(f,x)$ for $\frac{n}m\asymp1, n\leq\lambda\delta_N^{-\frac14} (\lambda>0), \delta_N=\max_{0\leq{j}\leq{N-1}}\Delta{t_j},$ are uniformly bounded as a family of linear operators acting in the space $C[-1, 1].$ In addition, as a consequence of the obtained result the order of approximation of the continuous function $f(x)$ by the Vallee-Poussin $V_{n,m,N}(f,x)$ averages in space $C[-1, 1]$ is established.

Key words: polynomial, orthogonal system, grid, asymptotic formula, Fourier sums, Vallee-Poussin averages.

UDC: 517.98

MSC: 33C45, 42С05

Received: 01.08.2024

DOI: 10.46698/q4030-9541-4914-r



© Steklov Math. Inst. of RAS, 2025