Abstract:
Predictor-corrector finite-difference-based lattice Boltzmann schemes are proposed. An approach with separate approximation of spatial derivatives in the convective terms of kinetic equations and an approach when these terms are replaced by a single finite difference are considered. Explicit finite-difference schemes are used at both the stages of the computation process. The cavity flow problem and the Taylor vortex problem are solved numerically in a wide range of the Reynolds number. It is shown that the proposed schemes allow a larger time step compared to other known schemes.