Abstract:
For the convection-driven dynamo in the Boussinesq approximation in a rotating spherical shell, we study various regimes of thermal convection which may occur in the planetary cores. Our dynamo model is based on the control volume method, which is well suited for parallel computers using message passing. We consider different boundary conditions at the surface of the shell and mimic a regime with stratification, which is typical for compositional convection. The influence of the inner solid conductive core on reversals is considered. Applications of our modeling to the two different planetary geometries – the Earth and Giant planets – are discussed.