RUS  ENG
Full version
JOURNALS // Numerical methods and programming // Archive

Num. Meth. Prog., 2013 Volume 14, Issue 1, Pages 44–49 (Mi vmp90)

Вычислительные методы и приложения

The structure of a stable manifold for fully implicit schemes

E. Yu. Vedernikova, A. A. Kornev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: An analog of the Hadamard-Perron theorem on the existence of a local stable manifold in a neighborhood of a fixed hyperbolic-type point for implicit mappings is proved. This result allows one to constructively study the structure of a manifold for a finite-difference approximation in time in the case of quasilinear parabolic-type equations and to prove that, in terms of the integral metric, the manifold of the nonlinear problem exists in an unbounded ellipsoid. Several theoretical estimates are given. A number of numerical results are discussed.

Keywords: stabilization; numerical algorithms; implicit finite-difference schemes.

UDC: 519.6

Received: 11.01.2013



© Steklov Math. Inst. of RAS, 2024