Abstract:
The effect of electron thermal motion on plane nonrelativistic nonlinear plasma oscillations is studied. It is shown numerically and analytically that when the thermal motion is taken into account, the oscillations are transformed to a traveling wave. At the same time, the wave amplitude grows with increasing temperature, which promotes the removal of energy from the initial region of oscillation localization. A finite-difference scheme is proposed for the numerical simulation on the basis of Eulerian variables. When using the Lagrangian variables to approximate small perturbations, the distributions of electron density maxima are obtained depending on the plasma temperature. The obtained analytical results are in good agreement with numerical experiments.