RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983 Number 2, Pages 11–19 (Mi vmumm3463)

This article is cited in 2 papers

Mathematics

A generalization of the Hilbert–Waring theorem

A. A. Zenkin


Abstract: Let
$$ \mathbf Z(m,r)=\biggl\{n\mid n\neq\sum^s(n_i^r-m^r) \quad\text{for all}\quad s\geq1,n_i\geq m\biggr\} $$
and
$$ \mathbf N(m,r,s)=\biggl\{n\mid n\neq\sum^s n_i^r,n_i\geq m,n> s\cdot m^r\biggr\}. $$
Then, for any $m\geq0$, $r\geq2$ there exist the number, $g(m,r)$, and the finite invariante set, $\mathbf Z(m,r)$, such that for any $s\geq g(m,r)$
$$ \mathbf N(m,r,s)=\{s\cdot m^r+z\mid z\in\mathbf Z(m,r)\}, $$
If $m=0$ then we obtain the classical Hilbert–Waring theorem.

UDC: 511.29:519.61

Received: 27.10.1981



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025