Abstract:
Let
$$
\mathbf Z(m,r)=\biggl\{n\mid n\neq\sum^s(n_i^r-m^r)
\quad\text{for all}\quad s\geq1,n_i\geq m\biggr\}
$$
and
$$
\mathbf N(m,r,s)=\biggl\{n\mid n\neq\sum^s n_i^r,n_i\geq m,n>
s\cdot m^r\biggr\}.
$$
Then, for any $m\geq0$, $r\geq2$ there exist the number, $g(m,r)$, and the
finite invariante set, $\mathbf Z(m,r)$, such that for any $s\geq g(m,r)$ $$
\mathbf N(m,r,s)=\{s\cdot m^r+z\mid z\in\mathbf Z(m,r)\},
$$
If $m=0$ then we obtain the classical Hilbert–Waring theorem.