RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014 Number 5, Pages 35–40 (Mi vmumm347)

This article is cited in 2 papers

Mathematics

Bases of trigonometric polynomials consisting of shifts of Dirichlet kernels

T. P. Lukashenko

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The system of shifts of Dirichlet kernel on $\frac{2k\pi}{2n+1}$, $k=0,\pm1,\dots,\pm n$, and the system of such shifts of the conjugate Dirichlet kernel with $\frac12$ are orthogonal bases in the space of trigonometric polynomials of degree $n$. The system of shifts of kernels $\sum_{k=m}^n \cos kx$ and $\sum_{k=m}^n\sin kx$ on $\frac{2k\pi}{n-m+1}$, $k=0,1,\dots,n-m$, is an orthogonal basis in the space of trigonometric polynomials with the components from $m\geqslant1$$n$. There is no orthogonal basis of shifts of any function in this space for $0<m<n$.

Key words: orthogonal basis, trigonometric polynomials, Dirichlet kernel, conjugate Dirichlet kernel.

UDC: 517.518

Received: 25.09.2013


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2014, 69:5, 211–216

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025