RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983 Number 3, Pages 61–72 (Mi vmumm3495)

This article is cited in 23 papers

Mathematics

Isomorphisms of the general linear group over an associative ring

I. Z. Golubchik, A. V. Mikhalev


Abstract: It is proved that every isomorphism of linear groups $\varphi\colon\mathrm{GL}_n(R)\to\mathrm{GL}_m(S)$ over arbitrary associative rings $R$ and $S$ with $1/2\in R$ and $1/2\in S$ for $n,m\ge3$ is a standard one on a subgroup $\mathrm{GE}_n(R)$ generated by elementary and diagonal matrices.

UDC: 512.544

Received: 10.12.1982



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025