RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982 Number 5, Pages 22–25 (Mi vmumm3559)

Mathematics

An inverse boundary value problem in magnetosphere investigations

V. V. Tkachuk


Abstract: Here we study some properties of the dimension $\operatorname{ind}(Y,X)$. The main result is: $\operatorname{ind}(Y,X)\le\operatorname{ind}Y+1$ for all Tychonoff spaces $X$. This enables to prove a generalization of the Uryson inequality. A necessary condition is found for the equality i$\operatorname{ind}(Y,I^\tau)=\operatorname{ind}(Y)$.

UDC: 513.83

Received: 29.10.1981



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025