RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982 Number 5, Pages 43–48 (Mi vmumm3565)

Mathematics

Rational functions of best approximation in integral metrics

A. K. Ramazanov


Abstract: We prove that any rational function of degree $\le n$ with real coefficients best approximating a function $f\in L_q(a,b)$, $1<q<\infty$, in the metric of $L_q(a,b)$ is of degree exactly $n$. We find the signs of the polynomials best approximating in the metric of $L_q([a,b])$, $1\le q\le\infty$ for some classes of differentiate functions.

UDC: 517.5

Received: 11.12.1981



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024