RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982 Number 6, Pages 62–70 (Mi vmumm3591)

Mathematics

Averaging of a system of elasticity theory with almost periodic coefficients

V. V. Zhikov, O. A. Oleinik


Abstract: We prove, for the linear elasticity system $L_\varepsilon(u^\varepsilon)=f$ with coefficients of the form $a_{ij,kh}\bigl(\frac{x}{\varepsilon}\bigr)$ where $\varepsilon$ is a small parameter, $\varepsilon$ is a positive constant and $a_{ij,kh}(y)$ is a Bohr's almost periodic function, that $u_\varepsilon\to u$ as $\varepsilon\to 0$ in the norm of $L^2(\Omega)$, $\hat L(u)=f$ in $\Omega$, $u_\varepsilon=0$, on the boundary of $\Omega$ and $\hat L(u)=f$ is an elasticity system with constant coefficients. The strain tensor also converges as $\varepsilon\to 0$ to the strain tensor of the homogenized system $\hat L(u)=f$.

UDC: 517.9

Received: 10.06.1982



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025