RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017 Number 1, Pages 11–16 (Mi vmumm38)

Mathematics

Probabilities of high extremes for a Gaussian stationary process in a random environment

A. O. Klebana, M. V. Korulin

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Let $\xi\left(t\right)$ be a zero-mean stationary Gaussian process with the covariance function $r\left(t\right)$ of Pickands type, i.e., $r(t)=1-|t|^{\alpha}+o(|t|^{\alpha}),~t\to 0,~0<\alpha\leq2$, and $\eta\left(t\right), \zeta\left(t\right)$ be periodic random processes. For any $T>0$ and independent $\xi\left(t\right)$, $\eta\left(t\right)$, $\zeta\left(t\right)$ we obtain the exact asymptotic behaviour of the probabilities $P(\max_{t\in[0,T]} \eta\left(t\right) \xi\left(t\right) > u)$, $P(\max_{t\in[0,T]} \left(\xi\left(t\right) + \eta\left(t\right)\right) > u)$ and $P(\max_{t\in[0,T]} \left(\eta\left(t\right) \xi\left(t\right) + \zeta\left(t\right)\right) > u)$ for $u \to \infty$.

Key words: Gaussian process, random environment, high extremes probabilities, double sum method, Laplace asymptotic method.

UDC: 519.218.7

Received: 16.11.2015


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2017, 72:1, 10–14

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024