RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013 Number 2, Pages 17–23 (Mi vmumm388)

This article is cited in 3 papers

Mathematics

Lower estimates of circuit complexity in the basis of antichain functions

O. V. Podolskaya

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The antichain function is a characteristic function of an antichain in the Boolean cube. The set of antichain functions is an infinite complete basis. We study the computational complexity of Boolean functions over an antichain functional basis. In this paper we prove an asymptotic lower bound of order $\sqrt{n}$ on the computational complexity of the linear function, the majority function, and almost all Boolean functions of $n$ variables.

Key words: antichain function, Boolean circuits, linear function, majority function.

UDC: 519.6

Received: 15.06.2012


 English version:
Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2013, 68:2, 98–103

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024