RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013 Number 2, Pages 53–57 (Mi vmumm396)

This article is cited in 3 papers

Short notes

A simple proof of the “geometric fractional monodromy theorem”

D. I. Tonkonog

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We present a simple proof of the “Geometric fractional monodromy theorem” (Broer–Efstathiou–Lukina 2010). The fractional monodromy of a Liouville integrable Hamiltonian system over a loop $\gamma\subset \mathbb{R}^2$ is a generalization of the classic monodromy to the case when the Liouville foliation has singularities over $\gamma$. The “Geometric fractional monodromy theorem” finds, up to an integral parameter, the fractional monodromy of systems similar to the $1:(-2)$ resonance system. A handy equivalent definition of fractional monodromy is presented in terms of homology groups for our proof.

Key words: Liouville integrable Hamiltonian system, fractional monodromy, bifurcation.

UDC: 514.853, 517.938.5, 515.146.2

Received: 20.06.2012


 English version:
Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2013, 68:2, 118–121

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025