RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013 Number 3, Pages 3–10 (Mi vmumm401)

This article is cited in 3 papers

Mathematics

Certain properties of Cesàro derivatives of higher orders

A. V. Dergachev

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: It is shown that a function with Cesàro $C_2$-derivative greater than $-\infty$ everywhere on a segment is not necessarily VBG. We also construct a function having a finite approximate derivative almost everywhere on a segment, but its $C_2$-derivative is equal to $+\infty$ almost everywhere.

Key words: Cesàro derivatives, Cesàro–Perron integral, approximate derivatives, VBG functions, Denjoy relations.

UDC: 517.518.152

Received: 02.11.2011


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2013, 68:3, 131–137

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025