RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982 Number 2, Pages 5–8 (Mi vmumm4145)

This article is cited in 1 paper

Mathematics

A solvability criterion for a finite-dimensional Lie algebra

A. I. Kostrikin


Abstract: We prove that a finite-dimensional Lie algebra $L$ over an algebraically closed field of characteristic $p>0$ is solvable if $L=A+B$ where $[A,A]=0$, $\dim A<p^2-p$, and $B$ is an arbitrary nilpotent subalgebra. We study some more general situation, too.

UDC: 519.4

Received: 15.10.1981



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024