RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982 Number 2, Pages 24–28 (Mi vmumm4150)

Mathematics

Two remarks on critical associative rings

P. N. Siderov


Abstract: Let $A$ be a critical ring, $R$ its Jacobson radical and $A/R\cong B_1\oplus\dots\oplus B_k$ being simple. We prove that $k$ is at most the nilpotency class of $R$. Then we study when the ring of triangular matrices over a critical ring with unity is critical.

UDC: 519.48

Received: 01.06.1981



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024