RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020 Number 1, Pages 56–59 (Mi vmumm4303)

Short notes

Conservation of factorizability of $G$-spaces by equivariant mappings

E. V. Martyanov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: In this paper we prove the $\mathbb R$-factorizability of an equivariant image of an $\mathbb R$-factorizable $G$-space with a $\mathrm{d}$-open action of an $\omega$-narrow $P$-group. It is shown that the $\mathbb R$-factorizability, $m$-factorizability, and $M$-factorizability of $G$-spaces hold in the case of $\mathrm{d}$-open equivariant images. It is proved that the $\mathbb R$-factorizability of topological groups holds under $\mathrm{d}$-open homomorphisms.

Key words: topological group, $G$-space, factorizability, uniformity, $\mathrm{d}$-open action.

UDC: 515.122.4, 515.123

Received: 23.05.2018


 English version:
Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2020, 75:1, 34–37

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024