RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021 Number 4, Pages 44–47 (Mi vmumm4416)

Short notes

Action of free commuting involutions on closed two-dimensional manifolds

T. Yu. Neretina

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Consider a function $f(g)$ associating each oriented surface $M$ of genus $g$ with the maximal number of free commuting involutions on $M$. It is proved that the surface of minimal genus $g$ for which $f(g) = n$ is the moment-angle complex $\mathcal{R}_\mathcal{K}$, where $\mathcal K$ is the boundary of an $(n+2)$-gon. Its genus is given by the formula $g=1+2^{n-1}(n-2)$.

Key words: real moment-angle complex, free commuting involutions.

UDC: 515.14, 515.16

Received: 13.07.2018


 English version:
Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2021, 76:4, 172–176

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024