RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022 Number 6, Pages 21–31 (Mi vmumm4504)

This article is cited in 1 paper

Mathematics

Topology of $5$-surfaces of a 3D billiard inside a triaxial ellipsoid with Hooke's potential

G. V. Belozerov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: A billiard inside a triaxial ellipsoid in a Hooke potential field (both attractive and repulsive) is considered. For each zone of non-bifurcational values of the energy, the homeomorphism class of the corresponding isoenergy $5$-surface in the phase space is determined. This result was obtained without using the integrability of the system. Following the method of V. V. Kozlov, we also present an explicit form of $n$ involutive first integrals for the multidimensional generalization of studied problem, i.e., a billiard in a Hooke potential field inside an $n$-axial ellipsoid in $n$-dimensional space.

Key words: integrable system, Hamiltonian system, billiard, integrable billiard, geodesic flow, confocal quadrics, topological invariants, Liouville foliation, isoenergy surface.

UDC: 517.938.5

Received: 10.09.2021

DOI: 10.55959/MSU0579-9368-1-2022-6-21-31


 English version:
Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2022, 77:6, 277–289

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024