RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023 Number 6, Pages 17–23 (Mi vmumm4574)

This article is cited in 1 paper

Mathematics

Chebyshev subspaces of Dirichlet series

V. M. Fedorov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: A. Haar and A. N. Kolmogorov found necessary and sufficient conditions under which finite-dimensional subspaces in the space of continuous functions on an arbitrary compact set are Chebyshev. In this paper, we prove that subspaces of Dirichlet series in the space of $C(0, \infty ]$ of continuous and bounded functions in the interval $(0, \infty )$ that have a limit at infinity form Chebyshev subspaces.

Key words: Chebyshev subspace, Dirichlet series, generalized Muntz formula, Stone–Cech compactification, support functional, functional carrier, conjugate space, Dirac functional.

UDC: 517.5

Received: 05.05.2023

DOI: 10.55959/MSU0579-9368-1-64-6-2


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2023, 78:6, 269–275

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024