RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024 Number 3, Pages 36–39 (Mi vmumm4606)

Mathematics

Nonsummability of almost everywhere orthorecursive expansions

A. A. Kiriukhina, T. P. Lukashenko

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: It was proved earlier that only Weyl multiplier $\lambda_k$ with the property $\sum\limits_{k=1}^\infty \frac1{\lambda_k}<\infty$ provides the almost every where convergence of an orthorecurcive expansions of a function which does not converge to it in the norm. This result is extended to summation methods that sum a sequence being constant staring with some its element to its limit.

Key words: convergence almost everywhere, orthorecursive expansions, summation of sequences.

UDC: 517.518

Received: 01.05.2023

DOI: 10.55959/MSU0579-9368-1-65-3-5


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2024, 79:3, 142–145

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025