Abstract:
Lyapunov reducibility of any bounded and sometimes unbounded linear homogeneous differential system to some bounded linear homogeneous differential equation is established. The preservation of the additional property of periodicity of coefficients is guaranteed, and for two-dimensional or complex systems the constancy of their coefficients is preserved. The differences in feasibility of asymptotic and generalized Lyapunov reducibility from Lyapunov one are indicated.
Key words:differential equation, linear system, linear equation, periodic system, Lyapunov reducibility, Lyapunov transformation, asymptotic equivalence.