RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011 Number 1, Pages 31–36 (Mi vmumm652)

Mathematics

Maximal commutative subalgebras of functions on spaces dual to Lie algebras

M. M. Derkacha, A. S. Tenb

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Yandex company, Moscow

Abstract: The problem of searching the maximal commutative sets of polynomial functions on the dual space to the semidirect sum of a Lie algebra and a vector space is studied. It is proved that if the first component of the semidirect sum is a compact algebra, then the set of functions can be described explicitly. This result is applied to some particular Lie algebras.

Key words: Lie–Poisson bracket, Liouville theorem, Mishchenko–Fomenko conjecture, complete commutative sets of polynomials.

UDC: 514.745.82

Received: 16.06.2010


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2011, 66:1, 30–34

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024