RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010 Number 2, Pages 3–11 (Mi vmumm760)

This article is cited in 1 paper

Mathematics

Properties of Cesàro means of double Fourier series

A. M. D'yachenko

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The pointwise behavior of partial sums and Chesaro means of trigonometric series were studied in many papers. This article deals with behavior of rectangular Chesaro means at a point $(x_0,y_0)$ for functions $f(x,y)$ bounded on square the $[-\pi;\pi]^2$ and satisfying the condition $|f(x_0+s,y_0+t)-f(x_0,y_0)|\le\rho(\sqrt{s^2+t^2})^\alpha$, for some $\alpha\in(0,1)$ and all $s$ and $t$.

Key words: Chesaro means, Fourier series.

UDC: 517.52

Received: 08.10.2008



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024