RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017 Number 4, Pages 20–27 (Mi vmumm77)

Mathematics

Poincaré polynomial of the space $\overline{{\mathcal M}_{0,n}}({\mathbb C})$ and the number of points of the space $\overline{{\mathcal M}_{0,n}}({\mathbb F}_q)$

N. Ya. Amburga, E. M. Kreinesba, G. B. Shabatca

a Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre «Kurchatov Institute»
b Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
c Russian State University for the Humanities, Moscow

Abstract: We obtain a combinatorial proof that the number of points of the space $\overline{{\mathcal M}_{0,n}}({\mathbb F}_q)$ satisfies the requrrent formula for Poincare polynomials of the space $\overline{{\mathcal M}_{0,n}}({\mathbb C})$.

Key words: moduli space, Poincare polynomial, finite field.

UDC: 512.772

Received: 26.10.2016


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2017, 72:4, 154–160

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025