RUS  ENG
Full version
JOURNALS // Siberian Journal of Pure and Applied Mathematics // Archive

Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 2013 Volume 13, Issue 2, Pages 51–60 (Mi vngu142)

This article is cited in 1 paper

Triviality of function $\omega_2$ for spatial complete graphs

A. A. Kazakov, Ph. G. Korablev

Chelyabinsk State University

Abstract: Let $G_n$, $n\geqslant 6$, be a complete spatial graph with $n$ vertices. In 1983 J. Y. Conway and C. McA. Gordon introduced function $\omega_2$ for all such graphs with 6 vertices. They proved that $\omega_2(G_6) = 1$ for any spatial graph $G_6$, and hence any such graph contains non-trivial link. In present work we prove that $\omega_2(G_n) = 0$ for any spatial complete graph $G_n$ with $n\geqslant 7$ vertices.

Keywords: spatial graph, hamiltonian set of circles, link, complete graph.

UDC: 515.162.8

Received: 23.04.2012


 English version:
Journal of Mathematical Sciences, 2014, 203:4, 490–498


© Steklov Math. Inst. of RAS, 2025