RUS  ENG
Full version
JOURNALS // Siberian Journal of Pure and Applied Mathematics // Archive

Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 2006 Volume 6, Issue 1, Pages 3–13 (Mi vngu222)

This article is cited in 2 papers

On the normal solvability of elliptic equations in the Holder space functions on plane

S. Baizaev, E. Muhamadiev


Abstract: The uniformly elliptic equation
$$ Lw\equiv w_{\overline{z}}+q_1(z)w_z+q_2(z)\overline{w}_{\overline{z}}+a(z)w+b(z)\overline{w}=f(z) $$
with coefficients in the Holder space functions $C_\alpha$ on plane are considered. The equivalency following assertions is established: a) the operator $L: C_\alpha^1\to C_\alpha$ is $n$-normal; b) the a priori estimate
$$ ||w||_{1,\alpha}\leqslant M(||Lw||_\alpha+\max_{|z|\leqslant1}|w(z)|), $$
is valid; c) a corresponding limit equations has only the zero solution in $C^1_\alpha$.

UDC: 517.95

Received: 07.04.2005



© Steklov Math. Inst. of RAS, 2024