RUS  ENG
Full version
JOURNALS // Siberian Journal of Pure and Applied Mathematics // Archive

Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 2006 Volume 6, Issue 1, Pages 43–59 (Mi vngu224)

This article is cited in 1 paper

Inverse problems for hyperbolic equations: the case of unknown time-dependent coefficients

I. R. Valitova, A. I. Kozhanovb

a Sterlitamak State Pedagogical Academy
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: Solvability is studied of the inverse problems of finding a solution $u(x,t)$ and the coefficients $q(t)$ of the equations
\begin{align*} u_{tt}-u_{xx}+q(t)a(x,t)u_t=&f(x,t),\\ u_{tt}-u_{xx}+q(t)a(x,t)u=&f(x,t) \end{align*}
In this case the overdetermination condition has the integral form
$$ \int_0^1K(x,t)u(x,t)dx=\mu(t). $$
Unique existence of regular solutions is established.

UDC: 517.946

Received: 29.12.2005



© Steklov Math. Inst. of RAS, 2024