RUS  ENG
Full version
JOURNALS // Siberian Journal of Pure and Applied Mathematics // Archive

Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 2007 Volume 7, Issue 4, Pages 74–88 (Mi vngu273)

The Lie commutators on the space of the smooth functions from $R^1$ to $R^2$

M. V. Neshchadim

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: In this paper we consider the classification problem of the local algebras Lie on the space $C^\infty(R^n,R^m)$. For $n=1$, $m=2$ and the symmetry analytical Lie commutators of the first order we obtain full classification under the module of the action of the group $GL_2(F)$, where $F$ is the space analytical functions from one variable.

UDC: 517.9

Received: 20.10.2006



© Steklov Math. Inst. of RAS, 2025