RUS  ENG
Full version
JOURNALS // Siberian Journal of Pure and Applied Mathematics // Archive

Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 2015 Volume 15, Issue 3, Pages 51–60 (Mi vngu375)

This article is cited in 5 papers

The index set of linear orderings that are autostable relative to strong constructivizations

S. S. Goncharovab, N. A. Bazhenovba, M. I. Marchukb

a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: We prove that a computable ordinal $\alpha$ is autostable relative to strong constructivizations if and only if $\alpha<\omega^{\omega+1}$. We calculate, in a precise way, the complexity of the index set for linear orderings that are autostable relative to strong constructivizations.

Keywords: computable model, strongly constructivizable model, autostability, autostability relative to strong constructivizations, linear ordering, computable ordinal, index set.

UDC: 510.5+510.6

Received: 06.04.2015

DOI: 10.17377/PAM.2015.15.304


 English version:
Journal of Mathematical Sciences, 2017, 221:6, 840–848


© Steklov Math. Inst. of RAS, 2024