RUS  ENG
Full version
JOURNALS // Siberian Journal of Pure and Applied Mathematics // Archive

Sib. J. Pure and Appl. Math., 2016 Volume 16, Issue 1, Pages 90–105 (Mi vngu394)

This article is cited in 1 paper

Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous Timoshenko-type plate with crack

N. P. Lazarevab

a Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Research Institute of Mathematics of North-Eastern Federal University named after M. K. Amosov

Abstract: The equilibrium problems for non-homogeneous plates with a rigid delaminated inclusion are considered. In this case, there is a crack between the rigid inclusion and an elastic part of the plate. Nonpenetration conditions on the crack faces are given in the form of inequalities. We analyze the dependence of solutions and derivatives of the energy functionals on the size of rigid inclusion. The existence of the solution to an optimal control problem is proved. For that problem the cost functional is defined by derivatives of the energy functional with respect to a crack perturbation parameter while the size parameter of rigid inclusion is chosen as the control function.

Keywords: plate, rigid inclusion, nonpenetration condition, variational inequality.

UDC: 539.311

Received: 20.09.2015

DOI: 10.17377/PAM.2016.16.106


 English version:
Journal of Mathematical Sciences, 2018, 228:4, 409–420


© Steklov Math. Inst. of RAS, 2025