RUS  ENG
Full version
JOURNALS // Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences // Archive

Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2012 Issue 4(29), Pages 207–211 (Mi vsgtu1075)

This article is cited in 2 papers

Short Communication
Algebra

On the nilpotent Leibniz–Poisson algebras

S. M. Ratseeva, O. I. Cherevatenkob

a Ul'yanovsk State University, Ul'yanovsk, Russia
b Ul'yanovsk State Pedagogical University, Ul'yanovsk, Russia

Abstract: In this article Leibniz and Leibniz–Poisson algebras in terms of correctness of different identities are investigated. We also examine varieties of these algebras. Let $K$ be a base field of characteristics zero. It is well known that in this case all information about varieties of linear algebras $V$ contains in its polylinear components $P_n(V)$, $n \in \mathbb{N}$, where $P_n(V)$ is a linear span of polylinear words of $n$ different letters in a free algebra $K(X,V)$. In this article we give algebra constructions that generate class of nilpotent varieties of Leibniz algebras and also algebra constructions that generate class of nilpotent by Leibniz varieties of Leibniz–Poisson algebras with the identity $\{ x_1, x_2 \} \cdot \{x_3, x_4 \} = 0$.

Keywords: Leibniz algebra, Leibniz–Poisson algebra, variety of algebras.

UDC: 512.572

MSC: Primary 17A32; Secondary 17B63

Original article submitted 06/V/2012
revision submitted – 03/VII/2012

DOI: 10.14498/vsgtu1075



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025