RUS  ENG
Full version
JOURNALS // Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences // Archive

Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014 Issue 2(35), Pages 16–21 (Mi vsgtu1294)

This article is cited in 2 papers

Differential Equations

On the Lowest by $x$-variable Terms Influence on the Spectral Properties of Dirichlet Problem for the Hyperbolic Systems

O. V. Alexeeva, V. V. Kornienko, D. V. Kornienko

I. A. Bunin Elets State University, Elets, Lipetskaya obl., 399770, Russian Federation

Abstract: We made the comparison study and characterize the spectral properties of differential operators induced by the Dirichlet problem for the hyperbolic system without the lowest terms of the form
$$ \cfrac{\partial^2{u^1}}{\partial{t}^2}+\cfrac{\partial^2{u^2}}{\partial{x}^2} = \lambda{u^1}+f^1, \quad \cfrac{\partial^2{u^2}}{\partial{t}^2}+\cfrac{\partial^2{u^1}}{\partial{x}^2} = \lambda{u^2}+ f^2, $$
and for the hyperbolic system with the lowest terms of the form
$$ \cfrac{\partial^2{u^1}}{\partial{t}^2}+\cfrac{\partial^2{u^2}}{\partial{x}^2}+\cfrac{\partial{u^2}}{\partial{x}} =\lambda{u^1}+f^1, \quad \cfrac{\partial^2{u^2}}{\partial{t}^2}+\cfrac{\partial^2{u^1}}{\partial{x}^2}+\cfrac{\partial{u^1}}{\partial{x}} = \lambda{u^2}+ f^2, $$
, which are considered in the closure $V_{t,x}$ of the bounded domain $\Omega_{t,x}=(0;\pi)^2$ in Euclidean space $\mathbb{R}^2_{t,x}.$ The spectral properties of the boundary value problems for the systems of linear differential equations of the hyperbolic type are investigated in the Hilbert space $\mathcal{H}_{t,x}$ in the terms of spectral closed operators $L:\mathcal{H}_{t,x}\to\mathcal{H}_{t,x}$. We study the spectra of the closed differential operators $L:\mathcal{H}_{t,x}\to\mathcal{H}_{t,x},$ induced by the Dirichlet problem for the second order hyperbolic systems: $C\sigma{L}=R\sigma{L}$ — empty set; point spectrum $P\sigma{L}$ is in the real straight line of the complex plane $\mathbb{C}$. The operator $L$ eigen vector functions generate the orthogonal basis for the hyperbolic system without the lowest terms. For the hyperbolic system with the lowest terms the operator $L$ eigen vector functions generate the Riesz basis, nonorthogonal in the Hilbert space $\mathcal{H}_{t,x}.$ The theorems on the structure of the induced by the Dirichlet problem operator $L$ spectrum $\sigma L$ are formulated.

Keywords: hyperbolic systems, boundary value problems, closed operators, spectrum, basis, orthogonal basis, Riesz basis.

UDC: 517.956.328

MSC: Primary 35P05; Secondary 35L52, 35P10

Original article submitted 13/XI/2013
revision submitted – 03/II/2014

DOI: 10.14498/vsgtu1294



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024