RUS  ENG
Full version
JOURNALS // Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences // Archive

Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014 Issue 2(35), Pages 9–15 (Mi vsgtu1298)

Algebra

On Leibniz–Poisson Special Polynomial Identities

S. M. Ratseeva, O. I. Cherevatenkob

a Ulyanovsk State University, Ulyanovsk, 432017, Russian Federation
b Ulyanovsk State I. N. Ulyanov Pedagogical University, Ulyanovsk, 432063, Russian Federation

Abstract: In this paper we study Leibniz–Poisson algebras satisfying polynomial identities. We study Leibniz–Poisson special and Leibniz–Poisson extended special polynomials. We show that the sequence of codimensions $\{r_n({\mathbf V})\}_{n\geq 1}$ of every extended special space of variety ${\mathbf V}$ of Leibniz-Poisson algebras over an arbitrary field is either bounded by a polynomial or at least exponential. Furthermore, if this sequence is bounded by polynomial then there is a polynomial $R(x)$ with rational coefficients such that $r_n({\mathbf V}) = R(n)$ for all sufficiently large n. It follows that there exists no variety of Leibniz-Poisson algebras with intermediate growth of the sequence $\{r_n({\mathbf V})\}_{n\geq 1}$ between polynomial and exponential. We present lower and upper bounds for the polynomials $R(x)$ of an arbitrary fixed degree.

Keywords: Leibniz algebra, Leibniz–Poisson algebra, variety of algebras.

UDC: 512.572

MSC: 17A32, 17B63

Original article submitted 19/II/2014
revision submitted – 17/III/2014

DOI: 10.14498/vsgtu1298



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025